Lagrangian structures and mixing in the wake of a streamwise oscillating cylinder
نویسندگان
چکیده
1 Lagrangian analysis is capable of revealing the underlying structure and complex phenomena in unsteady flows. We present Particle-Image Velocimetry measurements of the wake of a cylinder undergoing streamwise vortex-induced vibrations and calculate the Finite-Time Lyapunov Exponents (FTLE) in backward-and forward-time. The FTLE fields are compared to the phase-averaged vorticity fields for the four di↵er-ent wake modes observed while the cylinder experiences streamwise vortex-induced vibrations. The backward-time FTLE fields characterise the formation of vortices, with the roll up of spiral-shaped ridges coinciding with the roll up of the shear layers to form the vortices. Ridges in the forward-time fields tend to lie perpendicular to the flow direction and separate nearby vortices. The shedding of vortices coincides with a 'peel o↵' process in the forward-time FTLE fields, in which a ridge connected to the cylinder splits into two strips, one of which moves downstream. Particular attention is given to the 'wake breathing' process, in which the streamwise motion of the cylinder causes both shear layers to roll up simultaneously and two vortices of opposite sign to be shed into the wake. In this case, the ridges in forward-time FTLE fields are shown to define 'vortex cells', in which the new vortices form, and the FTLE fields allow the wake to be decomposed into three distinct regions. Finally, the mixing associated with each wake mode is examined, and it is shown that cross-wake mixing is significantly enhanced when the vibration amplitude is large and the vortices are shed alternately. However, while the symmetric shedding induces large amplitude vibrations, no increase in mixing is observed relative to the von Kármán vortex street observed behind near-stationary bodies.
منابع مشابه
Direct Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers
Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...
متن کاملInertial Particle Dispersion in the Lagrangian Wake of a Square Cylinder
A numerical investigation is presented into the relation between finite sized, inertial particle transport and entrainment in the vortex-dominated wake of a square cylinder placed in a channel at two blockage ratios and Lagrangian Coherent Structures (LCS) identified with recent Lagrangian visualization techniques. The square cylinder flow is computed with the incompressible, viscous flow solve...
متن کاملThe Study of Kinematics and Dynamics of Oscillating Laminar Flow About a Cylinder
In this paper, the oscillating two-dimensional laminar flow about a cylinder and the oscillation of a cylinder in still water are studied. A finite volume method is applied to solve the Navier Stokes equations using SIMPLEC algorithm on a body fitted co-located O-type grid. In this study, the non-dimensional flow numbers, Keulegan-Carpenter and Stokes’ numbers are chosen over a range where diff...
متن کاملExperimental Investigation of wake on an elliptic cylinder in the presence of tripping wire
In this research, the behavior and characteristics of the wake of flow in an elliptic cylinder with zero angle of attack in the presence of a tripping wire were investigated experimentally. For this purpose, the used an Aluminum cylinder with an elliptical cross section of the major and minor axis of 42.4 mm and 21.2 mm, respectively, and of the height of 390 mm. The cylinder model was examined...
متن کاملThe Study of Kinematics and Dynamics of Oscillating Laminar Flow About a Cylinder
In this paper, the oscillating two-dimensional laminar flow about a cylinder and the oscillation of a cylinder in still water are studied. A finite volume method is applied to solve the Navier Stokes equations using SIMPLEC algorithm on a body fitted co-located O-type grid. In this study, the non-dimensional flow numbers, Keulegan-Carpenter and Stokes’ numbers are chosen over a range where diff...
متن کامل